3 Punkt Gleit Durchschnitt Prognose
Fügen Sie einen Trend hinzu oder fügen Sie eine durchschnittliche Linie zu einem Diagramm hinzu Gilt für: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Um Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm anzuzeigen. Du kannst eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorhersagen zu können. Zum Beispiel prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für zukünftige Verkäufe vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D-Diagramm hinzufügen, das nicht gestapelt ist, einschließlich Bereich, Balken, Spalte, Zeile, Lager, Streuung und Blase. Sie können keine Trendlinie zu einem gestapelten, 3-D, Radar, Kuchen, Oberfläche oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Auf Ihrem Diagramm klicken Sie auf die Datenreihe, zu der Sie eine Trendlinie hinzufügen möchten. Die Trendlinie startet am ersten Datenpunkt der gewünschten Datenreihe. Überprüfe die Trendline-Box. Um eine andere Art von Trendlinie zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Prognose Oder zwei Period Moving Average. Für weitere Trendlinien klicken Sie auf Weitere Optionen. Wenn Sie weitere Optionen wählen. Klicken Sie unter Trendline-Optionen auf die gewünschte Option im Format Trendline-Bereich. Wenn Sie Polynom wählen. Geben Sie im Feld Auftrag die höchste Leistung für die unabhängige Variable ein. Wenn Sie Moving Average auswählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden sollen, um den gleitenden Durchschnitt im Feld Periode zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) bei oder nahe 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-squared-Wert. Sie können diesen Wert auf Ihrem Diagramm anzeigen, indem Sie den R-quadratischen Wert auf dem Diagramm anzeigen (Format Trendline-Bereich, Trendline-Optionen). In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Zeile aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit einer stetigen Rate zunimmt oder abnimmt. Eine lineare Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate für eine Zeile zu berechnen: wobei m die Steigung ist und b der Zwischenpunkt ist. Die folgende lineare Trendlinie zeigt, dass der Umsatz der Verkäufe über einen Zeitraum von 8 Jahren konstant gestiegen ist. Beachten Sie, dass der R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Anpassung der Linie an die Daten ist. Zeigt eine best-fit gekrümmte Linie, ist diese Trendlinie nützlich, wenn die Rate der Veränderung in den Daten steigt oder sinkt schnell und dann Ebenen aus. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem Festflächengebiet, wo die Population als Raum für die Tiere abnimmt. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Anpassung der Linie an die Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Schwankungen der Daten bestimmt werden oder wie viele Kurven (Hügel und Täler) in der Kurve erscheinen. Typischerweise hat eine Polynom-Trendlinie des Auftrags 2 nur einen Hügel oder ein Tal, ein Auftrag 3 hat ein oder zwei Hügel oder Täler, und ein Auftrag 4 hat bis zu drei Hügel oder Täler. Eine Polynom - oder Curvilinear-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wo b und Konstanten sind. Die folgende Reihenfolge 2 Polynom Trendline (ein Hügel) zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Zeilen gut an die Daten angepasst sind. Bei der Darstellung einer gekrümmten Linie ist diese Trendlinie für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens in 1-Sekunden-Intervallen. Sie können keine Power Trendline erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine Power-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Abstandsmessung zeigt die Entfernung in Metern nach Sekunden an. Die Power Trendline zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Linie zu den Daten ist. Wenn man eine gekrümmte Linie anzeigt, ist diese Trendlinie sinnvoll, wenn Datenwerte steigen oder sinken. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, wie es altert. Beachten Sie, dass der R-Quadrat-Wert 0,990 ist, was bedeutet, dass die Linie die Daten fast perfekt passt. Moving Average Trendline Diese Trendlinie zeigt Datenschwankungen aus, um ein Muster oder einen Trend deutlicher zu zeigen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (gesetzt durch die Periodenoption), mittelt sie und verwendet den Mittelwert als Punkt in der Zeile. Wenn zum Beispiel die Periode auf 2 gesetzt ist, wird der Mittelwert der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Mittelwert des zweiten und dritten Datenpunktes wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie nutzt diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Serie, abzüglich der Nummer, die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis, sortiere die x-Werte, bevor du einen gleitenden Durchschnitt hinzufügst. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Anzahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft werden. In der Praxis wird der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihen liefern, wenn der Mittelwert konstant ist oder sich langsam ändert. Im Falle eines konstanten Mittels wird der größte Wert von m die besten Schätzungen des zugrunde liegenden Mittels geben. Eine längere Beobachtungsperiode wird die Effekte der Variabilität ausgleichen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung des zugrunde liegenden Prozesses zu reagieren. Zur Veranschaulichung schlagen wir einen Datensatz vor, der Änderungen des zugrunde liegenden Mittels der Zeitreihen beinhaltet. Die Figur zeigt die Zeitreihen, die für die Illustration verwendet wurden, zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als Konstante bei 10. Beginnend um die Zeit 21 erhöht er sich in jeder Periode um eine Einheit, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden durch Addition des Mittelwertes, eines zufälligen Rauschens aus einer Normalverteilung mit Nullmittelwert und Standardabweichung simuliert. 3. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir den Tisch benutzen, müssen wir uns daran erinnern, dass zu irgendeiner Zeit nur die bisherigen Daten bekannt sind. Die Schätzungen des Modellparameters, für drei verschiedene Werte von m werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung dargestellt. Die Figur zeigt die gleitende durchschnittliche Schätzung des Mittelwertes zu jeder Zeit und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Aus der Figur ergibt sich sofort eine Schlussfolgerung. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend zurück, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, wenn der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und der durch den gleitenden Durchschnitt vorhergesagte Mittelwert. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Für ein abnehmendes Mittel ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Vorspannung, die in der Schätzung eingeführt werden, sind Funktionen von m. Je größer der Wert von m. Je größer die Größe der Verzögerung und der Vorspannung ist. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittels sind in den nachstehenden Gleichungen angegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern es beginnt als Konstante, ändert sich zu einem Trend und wird dann wieder konstant. Auch die Beispielkurven sind vom Lärm betroffen. Die gleitende durchschnittliche Prognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Bias steigen proportional an. Die nachfolgenden Gleichungen zeigen die Verzögerung und die Vorspannung einer Prognoseperiode in die Zukunft im Vergleich zu den Modellparametern. Wiederum sind diese Formeln für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten uns über dieses Ergebnis nicht wundern. Der gleitende durchschnittliche Schätzer beruht auf der Annahme eines konstanten Mittels, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Untersuchungszeitraums. Da Echtzeit-Serien den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens die größte Wirkung für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widersprüchlichen Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu reduzieren und m zu reduzieren, um die Prognose besser auf Veränderungen zu reagieren Im gemein Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Ist die Zeitreihe wirklich ein konstanter Wert, so ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Begriff, der eine Funktion und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes, der mit einer Stichprobe von m Beobachtungen geschätzt wird, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Eine große m macht die Prognose nicht mehr auf eine Veränderung der zugrunde liegenden Zeitreihen. Um die Prognose auf Veränderungen zu reagieren, wollen wir m so klein wie möglich (1), aber das erhöht die Fehlerabweichung. Die praktische Vorhersage erfordert einen Zwischenwert. Vorhersage mit Excel Das Prognose-Add-In implementiert die gleitenden durchschnittlichen Formeln. Das folgende Beispiel zeigt die Analyse, die durch das Add-In für die Beispieldaten in Spalte B bereitgestellt wird. Die ersten 10 Beobachtungen sind indiziert -9 bis 0. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die MA (10) - Spalte (C) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Spalte Fore (1) (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall befindet sich in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Fore nach unten verschoben. Die Err (1) Spalte (E) zeigt den Unterschied zwischen Beobachtung und Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 gleich 6. Der prognostizierte Wert aus dem gleitenden Durchschnitt zum Zeitpunkt 0 beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und die mittlere Durchschnittsabweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet. Slideshare verwendet Cookies, um Funktionalität und Leistung zu verbessern und Ihnen relevante Werbung zu bieten. Wenn Sie die Seite weiter durchsuchen, stimmen Sie der Verwendung von Cookies auf dieser Website zu. Siehe unsere Benutzervereinbarung und Datenschutzbestimmungen. Slideshare verwendet Cookies, um Funktionalität und Leistung zu verbessern und Ihnen relevante Werbung zu bieten. Wenn Sie die Seite weiter durchsuchen, stimmen Sie der Verwendung von Cookies auf dieser Website zu. Weitere Informationen finden Sie in unserer Datenschutzerklärung und Benutzervereinbarung. Entdecken Sie alle Ihre Lieblingsthemen in der SlideShare App Holen Sie sich die SlideShare App, um für später zu speichern, auch offline Weiter zur mobilen Website Upload Login Signup Double tippen, um zu verkleinern Moving Average Methode Teilen Sie diese SlideShare LinkedIn Corporation copy 2017Fügen Sie einen Trend oder gleitende durchschnittliche Zeile zu einem Diagramm Gilt für: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Um Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm anzuzeigen. Du kannst eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorhersagen zu können. Zum Beispiel prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für zukünftige Verkäufe vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D-Diagramm hinzufügen, das nicht gestapelt ist, einschließlich Bereich, Balken, Spalte, Zeile, Lager, Streuung und Blase. Sie können keine Trendlinie zu einem gestapelten, 3-D, Radar, Kuchen, Oberfläche oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Auf Ihrem Diagramm klicken Sie auf die Datenreihe, zu der Sie eine Trendlinie hinzufügen möchten. Die Trendlinie startet am ersten Datenpunkt der gewünschten Datenreihe. Überprüfe die Trendline-Box. Um eine andere Art von Trendlinie zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Prognose Oder zwei Period Moving Average. Für weitere Trendlinien klicken Sie auf Weitere Optionen. Wenn Sie weitere Optionen wählen. Klicken Sie unter Trendline-Optionen auf die gewünschte Option im Format Trendline-Bereich. Wenn Sie Polynom wählen. Geben Sie im Feld Auftrag die höchste Leistung für die unabhängige Variable ein. Wenn Sie Moving Average auswählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden sollen, um den gleitenden Durchschnitt im Feld Periode zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) bei oder nahe 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-squared-Wert. Sie können diesen Wert auf Ihrem Diagramm anzeigen, indem Sie den R-quadratischen Wert auf dem Diagramm anzeigen (Format Trendline-Bereich, Trendline-Optionen). In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Zeile aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit einer stetigen Rate zunimmt oder abnimmt. Eine lineare Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate für eine Zeile zu berechnen: wobei m die Steigung ist und b der Zwischenpunkt ist. Die folgende lineare Trendlinie zeigt, dass der Umsatz der Verkäufe über einen Zeitraum von 8 Jahren konstant gestiegen ist. Beachten Sie, dass der R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Anpassung der Linie an die Daten ist. Zeigt eine best-fit gekrümmte Linie, ist diese Trendlinie nützlich, wenn die Rate der Veränderung in den Daten steigt oder sinkt schnell und dann Ebenen aus. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem Festflächengebiet, wo die Population als Raum für die Tiere abnimmt. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Anpassung der Linie an die Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Schwankungen der Daten bestimmt werden oder wie viele Kurven (Hügel und Täler) in der Kurve erscheinen. Typischerweise hat eine Polynom-Trendlinie des Auftrags 2 nur einen Hügel oder ein Tal, ein Auftrag 3 hat ein oder zwei Hügel oder Täler, und ein Auftrag 4 hat bis zu drei Hügel oder Täler. Eine Polynom - oder Curvilinear-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wo b und Konstanten sind. Die folgende Reihenfolge 2 Polynom Trendline (ein Hügel) zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Zeilen gut an die Daten angepasst sind. Bei der Darstellung einer gekrümmten Linie ist diese Trendlinie für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens in 1-Sekunden-Intervallen. Sie können keine Power Trendline erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine Power-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Abstandsmessung zeigt die Entfernung in Metern nach Sekunden an. Die Power Trendline zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Linie zu den Daten ist. Wenn man eine gekrümmte Linie anzeigt, ist diese Trendlinie sinnvoll, wenn Datenwerte steigen oder sinken. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, wie es altert. Beachten Sie, dass der R-Quadrat-Wert 0,990 ist, was bedeutet, dass die Linie die Daten fast perfekt passt. Moving Average Trendline Diese Trendlinie zeigt Datenschwankungen aus, um ein Muster oder einen Trend deutlicher zu zeigen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (gesetzt durch die Periodenoption), mittelt sie und verwendet den Mittelwert als Punkt in der Zeile. Wenn zum Beispiel die Periode auf 2 gesetzt ist, wird der Mittelwert der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Mittelwert des zweiten und dritten Datenpunktes wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie nutzt diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Serie, abzüglich der Nummer, die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis, sortiere die x-Werte, bevor du einen gleitenden Durchschnitt hinzufügst. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Anzahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft wurden.
Comments
Post a Comment